ATOMIC ENERGY CENTRAL SCHOOL-03, TARAPUR.

CLASS: IX SUBJECT: PHYSICS

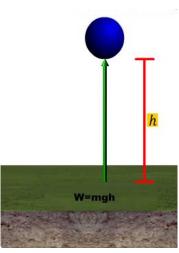
CHAPTER: 11

"WORK AND ENERGY": MODULE-2

Topics to be learn...

- o Potential Energy.
- o Potential Energy of an Object at a Height.
- Law of Conservation of Energy.
- o Power
- o Commercial Unit of Energy.

Potential Energy:



- It is the energy possessed by the object due to its position or condition.
- It is same as stored energy.

Potential Energy of an Object at a Height:

- Potential energy of an object at a height is the Gravitational Potential Energy.
- The work done in raising an object from the ground to the height against gravity is called as Gravitational Potential Energy.
 - o Let an object of mass 'm',
 - o Raised through a height 'h',
 - Minimum force required to raise the object,
 Weight = mg,
 - Let the work done on the object against gravity, 'W'.

$$W = force \times displacement$$

$$W = mg \times h$$

$$W = mgh$$

o By the definition of potential energy,

$$PE = Work done$$

$$PE = mgh$$

o Gravitational Energy depends on the initial and final positions of object and not on the path.

Law of conservation of Energy:

- o Energy can only be converted from one form to another.
- o Energy can neither be created not destroyed.
- After and before the transformation total energy remains same.

Freely falling body:

o At position C:

$$KE = 0$$

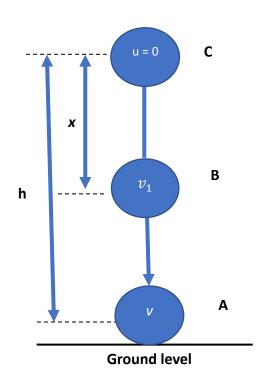
$$PE = mgh$$

$$Total\ Energy = 0 + mgh = mgh \dots (1)$$

o At position B:

Let v_1 be velocity of body, then u = 0, S = x.

From equation: $v^2 = u^2 + 2$ a S


$$v_1^2 = 0 + 2 g x = 2gx$$

$$KE = \frac{1}{2}mv^2 = \frac{1}{2}mv_1^2 = \frac{1}{2}m \times 2gx$$

$$PE = mg(h-x) = mgh - mgx$$

Therefore $Total\ Energy = mgx + mgh - mgx$

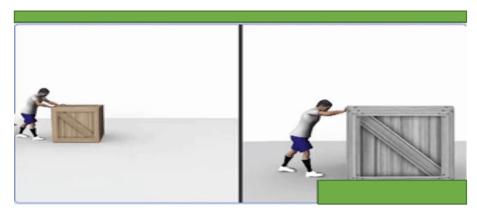
$$Total\ Energy = mgh....(2)$$

At position A:

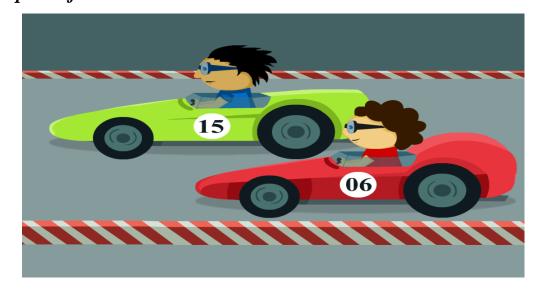
- o Let velocity of body be v, then u = 0, S = h.
- o From equation: $v^2 = u^2 + 2$ a S

$$v^2 = 0 + 2 g h = 2 g h$$

Since KE =
$$\frac{1}{2}$$
mv² = $\frac{1}{2}$ m × 2 g h = mgh


And
$$PE = 0$$

Therefore, Total Energy = $mgh + 0 = mgh \dots (3)$


• "During free fall of an object, the decrease in potential energy, at any point in its path, appears as an equal amount of increase in kinetic energy."

Rate of Doing Work: Examples

1. Stronger person may do certain Work in relatively less time.

2. A more powerful vehicle would complete the journey in shorter time than a less powerful one.

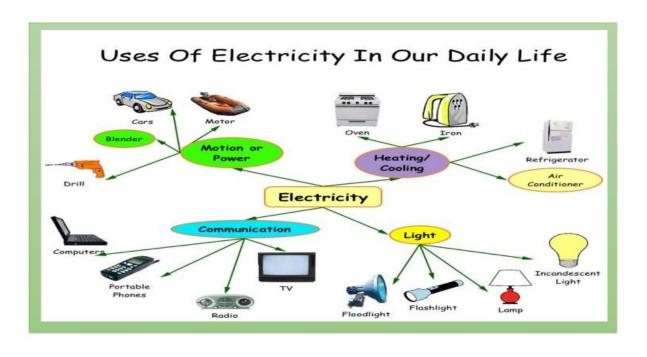
Power

Definition: "Power is defined as the rate of doing work."

- Let an agent does a work 'W',
- Takes time 't',
- Then Power 'P', => Power = $\frac{Work}{time}$ $P = \frac{W}{t}$
- o SI unit of power is watt (W).
- Definition: "I watt is the power of an agent, which does work at the rate of I joule per second."

$$1 \text{ watt} = \frac{1 \text{ joule}}{1 \text{ second}} = 1 \text{ } W = \frac{1J}{1s}$$

• Larger rates of energy transferred expressed in kilowatts (kW)


$$Average\ Power = \frac{\textit{Total Energy Consumed}}{\textit{Total Time Taken}}$$

Commercial unit of energy:

One kilowatt hour (kWh) is a bigger unit of energy.

Definition: "One kilowatt hour is the energy used in one hour at the rate of 1000 joule per second."

$$1 \ kWh = 1 \ kW \times 1 \ h$$

= 1000 W ×3600 s
= 3600000J
 $1 kWh = 3.6 \times 10^6 \ J$

Industries

Commercial establishments

- o Electrical energy used during a month is expressed in terms of units.
- \circ 1 unit = 1 kilowatt hour.

